Nanoelectronics researchers from E2SWITCH partner ETHZ employ supercomputer for an electrifying simulation speedup

Researchers at ETH Zurich are using America's fastest supercomputer to make huge gains in understanding the smallest electronic devices.

The team, led by E2SWITCH member Mathieu Luisier, focuses on further developing the front line of electronics research - simulating and better understanding nanoscale components such as transistors or battery electrodes whose active regions can be on the order of one-billionth of a meter, or about as long as your fingernails grow in one second.

Though the scales of the investigated objects are small, the team has made big progress toward more efficient computational codes. Its research was selected as a finalist for this year's Association of Computing Machinery's Gordon Bell Prize, one of the most prestigious awards in supercomputing.
The team's award submission is a result of research conducted on the Oak Ridge Leadership Computing Facility's Cray XK7 Titan supercomputer. The OLCF is a U.S. Department of Energy Office of Science User Facility located at Oak Ridge National Laboratory.

Laptops, cell phones and other electronic devices are becoming cheaper and more accessible while also becoming increasingly sophisticated. These advancements are largely because of the ever-shrinking dimensions of their electronic components.

However, developing next-generation hardware now requires scientists and engineers to understand material interactions at extremely small time- and size scales, leading researchers to augment experiment with simulation.

"Our goal is to study nanoscale devices, such as nanotransistors, batteries or a variety of other new devices such as computer memories, optical switches or light emitting diodes on an atomic level," Luisier said. "If you want to make these simulations accurate and truly predictive, you need to use so-called ab initio, or from first principles, simulation methods."

The full article can be found on the nanowerk website